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Cooperating with nonequilibrium fluctuations through their optimal control

B. E. Vugmeister and H. Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 25 October 1996!

The task of fluctuation control in stochastic systems is reformulated as an optimal control problem. We show
that it is possible to design an external control field that works cooperatively with system fluctuations to
achieve a desired physical objective. The proposed approach is illustrated with one-dimensional Brownian
motion as a simple model.@S1063-651X~97!09403-8#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Optimal control theory, originally developed for enginee
ing problems, has been applied recently to address the
trol of various phenomena in physics and chemistry incl
ing magnetic resonance selective excitations@1#, crystal
lattice vibrations @2#, population inversion@3#, selective
chemical reactions@4,5#, birefringence of liquid crystals@6#,
etc. ~see Ref.@7# for a review!. In these phenomena an a
plied external field is used as a control variable.

In recent experimental and theoretical studies@8,9# of
large nonequilibrium fluctuations driven by random fields
the form of Gaussian noise, it has been shown that the p
ability distribution of fluctuations peaks sharply for the mo
probableoptimalpath for the fluctuation trajectory. This ob
servation opens a broad area of research in the field of l
fluctuations in terms of optimal control theory. That is, c
we design controls that optimally work in cooperation w
natural fluctuations to better achieve a desired physical
jective?

In the present paper we show that the task of contro
the presence of nonequilibrium fluctuations can be form
lated as a problem in optimal control theory. This approa
allows one to use the powerful mathematical and numer
techniques developed in that field@10#. To demonstrate the
basic formalism, we apply it to the case of simple line
Brownian motion for which analytical results can be o
tained.

II. OPTIMAL CONTROL FORMALISM

In the conventional formulation of optimal control theo
one is interested in determining the temporal form of
external control field that steers the system to the vicinity
a given point in the phase space often at given momen
time. In order to be specific and illustrate the main ideas,
will consider a simple formulation of optimal control theor
We assume that the system is described by an equatio
motion with one degree of freedom,

dx

dt
5F~x,E!, ~1!

whereE(t) is the external control field, andF(x,E) acts as
the total force that drives the system. In order to find
optimal external fieldE(t) that steers the system to the v
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cinity of a desired target pointxg at the target timetg ~start-
ing at pointx0 at t50), one minimizes the cost functional

JE5 1
2k„x~ tg!2xg…

21E
0

tg
dtl~ t !S dxdt 2F~x,E! D

1 1
2xF E

0

tg
dtE~ t !22UG . ~2!

The first term in Eq.~2! corresponds to the desired goal
reaching the pointxg at timet5tg . l(t) is a Largange mul-
tiplier function that assures that the optimal solution is co
strained to satisfy Eq.~1!. The Lagrange multiplierx assures
that the total energy of the field is fixed at the valueU
@11,12#,

1
2 E

0

tg
dt E~ t !25U. ~3!

The temporal form of the optimal control field can be fou
by minimization of JE with respect tox(t), l(t), x, and
E(t), and solving the corresponding Euler-Lagrange eq
tions.

In order to investigate the role of fluctuations in the mod
described by Eq.~1!, we introduce the random field~force!
f (t) which we choose to be Gaussian white noise. Assum
that the intensity of the random field is sufficiently small, w
may rewrite Eq.~1! as

dx

dt
5F~x,E!1 f ~ t !, ~4!

with

^ f ~ t ! f ~ t8!&5Dd~ t2t8!, ~5!

whereD is the characteristic noise intensity. The probabil
P@ f (t)# of the realization of a particular random field traje
tory is given by@13#

P@ f ~ t !#}expF2
1

2DE dt f~ t !2G . ~6!

One can see from Eq.~6! that the probabilityP reaches its
maximum for the most probable random field which min
mizes the integral*dt f(t)2 under the constraint that th
equation of motion, Eq.~4!, is satisfied. Such a constrain
2522 © 1997 The American Physical Society
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leads to a nonzero value of the most probable random fi
which, according to Eq.~6!, would be equal to zero withou
constraints. We will call the most probable random fie
f (t) as theoptimal random field fopt(t) to distinguish it from
theoptimal control field Eopt(t).

The optimal control fieldEopt cooperating with the opti-
mal random fieldf opt(t) determines the particular fluctuatio
trajectoryx(t), called optimal trajectory or optimal fluctua
tion. The probability of an optimal fluctuation is equal to th
probability of the realization of the optimal random field.
order to find the optimal trajectory of the system leading
point xg it has been proposed@8# to minimize*dt f(t)2 un-
der the constraint that the equation of motion, Eq.~4!, with
boundary conditionsx(0)5x0 ,x(tg)5xg be satisfied. How-
ever, a full formulation of this problem with the control fiel
has not been implemented, as discussed below.

Rather than imposing the hard demand thatx(tg)5xg,
one can use optimal control theory by introducing the tar
functional@i.e., 12k„x(tg)2xg…

2# for the model~4! that deter-
mines the boundary conditions for the Lagrange multip
function, and permits findingx(tg) self-consistently. We
seek the fluctuation path that approachs the pointxg in an
optimal manner, corresponding to the minimization of t
functional

Jf ,E5 1
2k„x~ tg!2xg…

21 1
2 E

0

tg
dt f~ t !21E

0

tg
dtl~ t !S dxdt

2F~x,E!2 f ~ t ! D 1 1
2xF E

0

tg
dtE~ t !22UG . ~7!

Thus we seek the best controlE(t) that can cooperatively
work with the optimal random fluctuationf (t) of minimal
norm in order to meet the objectivex(tg)5xg . It is apparent
that x(tg) will be driven closer toxg as k increases. The
variation of the functionalJf ,E yields

dJf ,E5k„x~ tg!2xg…dx~ tg!1E
0

tg
dt f~ t !d f ~ t !1E

0

tg
dtl~ t !

3S ]dx

]t
2

]F

]x
dx~ t !2

]F

]E
dE~ t !2d f ~ t ! D

1xE
0

tg
EdE~ t !. ~8!

AssumingdJf ,E50, and integrating by parts,

E
0

tg
dtl~ t !

]dx

]t
5ldxu0

tg2E
0

tg
dt

]l

]t
dx, ~9!

we obtain the following equations@along with Eqs.~3! and
~4!#:

f ~ t !5l~ t !, ~10!

]l

]t
5l

]F

]x
, ~11!

l~ tg!5k„xg2x~ tg!…, ~12!
d,

t

r

xE~ t !5
]F~x,E!

]E
l~ t !. ~13!

The following minimization algorithm may be adopted@11#
to solve Eqs.~3!, ~4!, and~11!–~13!.

~1! Make an initial guess for the fieldE(t) consistent with
Eq. ~3!, and setf50.

~2! Integrate the equation of motion, Eq.~4!, with the
initial condition.

~3! With the resultant time evolution ofx(t), apply the
boundary condition, Eq.~12!, and integrate Eq.~11!.

~4! With the resultant time evolution ofx(t) and l(t)
calculateE(t) from Eq. ~13! while adjusting the Lagrange
multiplier x to satisfy Eq.~3!.

~5! Use the control fieldE(t) and ‘‘random’’ field f (t)
from Eq. ~10! and repeat steps~2!–~4! until a convergent
solution is obtained.

Recently Smelyanskiy and Dykman@14# considered the
optimal control of large fluctuation using a different forma
ism without the target term in the cost functional. Explic
results were obtained with perturbation theory with resp
to control field. The present approach utilizing optimal co
trol theory allows one to go beyond the perturbation the
in a convenient way.

III. LINEAR BROWNIAN MOTION

In order to illustrate the formalism above, we consid
linear Brownian motion that corresponds the replacemen
F(x,E) in Eq. ~4! by

F~x,E!52gx1E ~14!

This simple case allows for the analytical solution for t
temporal form of the external optimal field and for the pro
ability of the optimal fluctuations.

Equations~11! and ~13! reduce to

]l

]t
5gl, ~15!

E~ t !5
l~ t !

x
. ~16!

We obtain

x~ t !5
1

2g
~egt2e2gt!Fk„xg2x~ tg!…e

2gtg6S 2gU

e2gtg21D
1/2G ,
~17!

Eopt~ t !56S 2gU

e2gtg21D
1/2

egt, ~18!

f opt~ t !5k„xg2x~ tg!…e
gt. ~19!

The value ofx(tg) should be obtained self-consistently fro
Eq. ~17! by settingt5tg

One can see from Eqs.~18! and~19! that the shape of the
external optimal fieldEopt(t) coincides exactly with the
shape of random fieldf opt(t). The positive growth of these
functions with larger values ofg is natural asg acts as
damping rate in Eq.~14!, and both the control field and ran
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2524 55B. E. VUGMEISTER AND H. RABITZ
dom field must work cooperatively to overcome the damp
to achievex(tg)'xg . When obtainingEopt(t) in Eq. ~18!,
we used Eq.~3! in order to findx, and the two possible
solutions forx correspond to two different fieldsEopt differ-
ing only in sign. The positive value ofEopt corresponds to
the external field that drives the system in the same direc
as f opt. It is apparent that such a control field decreases
energy of the random field required to achieve the va
x(tg)5xg . Indeed, we obtain~choosing, for simplicity,
k@1)

1
2 E

0

tg
dt fopt~ t !

25
g~xg7 x̃!2

12e22gtg
, ~20!

where

x̃5
1

2g
@2gU~12e22gtg!#1/2. ~21!

Equation ~20! shows that the energy of the random fie
utilized to aid in steering the system to pointxg.0 is dimin-
ished ifEopt.0. The converse situationEopt,0 would result
in an indesirable increase of the energy off opt. Such a situ-
ation, known as amini-maxsolution, has been discussed r
cently @12# in the study of control in the presence of distu
bances, with fixed energy. The latter work sought the b
control in the presence of the worst possible disturban
with fixed energy as a means of assuring a robust con
with the fluctuations having a minimal effect on the ou
come. In contrast, the present work seeks the best co
field with fixed energy that can cooperatively work with di
turbances~fluctuations! to optimally achieve the objective
Thus uncontrolled disturbances can be beneficial if we t
them properly.

Finally, using Eqs.~6! and ~20!, we represent the trans
tion probability to reach the pointxg at t5tg starting from
x050 at t50 as

P~x0,0;xg ,tg!5P@ f opt~ t !#}expF2
g

D

~xg7 x̃!2

~12e22gtg!G .
~22!
.
s.
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One can see from Eq.~22! that the meaning ofx̃ can be
given as the shift of the most probable value ofxg due to
cooperation between the optimal control fieldEopt(t) and
optimal random fieldf opt(t). For gtg@1 this shift is seen to
approach the time independent value (U/2g)1/2 from Eq.
~21!. As seen from Eq.~22!, the control field increases th
transition probability of approaching the targetxg .

We emphasize that atU50 ~i.e., E50), Eq. ~22! coin-
cides with the exact results for the nonequilibrium transiti
probability for linear Brownian motion. There are two po
sible reasons for such a coincidence. First, the probab
distribution over the paths peaks sharply at the most prob
optimal path. Such an explanation, that is appropriate
large occasional fluctuations, has been given in Refs.@8,9#.
On the other hand, in linear systems the distribution of d
ferent paths is Gaussian due to the character of the ran
force f (t). In this situation the most probable transition pro
ability coincides with the observable average transition pr
ability apparently due to the symmetrical form of the Gau
ian distribution of the different paths, rather than narrow p
distribution. This aspect has not been given enough atten
in previous analyses of optimal fluctuations.

IV. CONCLUSION

In conclusion we have shown that the analysis of no
equilibrium fluctuations in stochastic systems can be attr
tively formulated in terms of conventional optimal contr
theory as a problem of finding the external control field th
increase the probability for the system to reach the tar
state. The full exploration of this observation should open
dynamical controls that maywork cooperatively withsystem
fluctuations.
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