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Cooperating with nonequilibrium fluctuations through their optimal control
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The task of fluctuation control in stochastic systems is reformulated as an optimal control problem. We show
that it is possible to design an external control field that works cooperatively with system fluctuations to
achieve a desired physical objective. The proposed approach is illustrated with one-dimensional Brownian
motion as a simple modelS1063-651X97)09403-9

PACS numbsgps): 05.40:+j, 02.50—r, 05.20-y

[. INTRODUCTION cinity of a desired target poing; at the target time, (start-
ing at pointxy att=0), one minimizes the cost functional
Optimal control theory, originally developed for engineer- . q
ing problems, has been applied recently to address the con- _1 VY 9 ax
trol of various phenomena in physics and chemistry includ- Je= 2k(x(tg) =xg)™+ Jo dt)\(t)( dt F(X’E))
ing magnetic resonance selective excitatiddg, crystal
lattice vibrations[2], population inversion[3], selective
chemical reactionf4,5], birefringence of liquid crystalg5],
etc. (see Ref[7] for a review. In these phenomena an ap-
plied external field is used as a control variable. The first term in Eq{(2) corresponds to the desired goal of
In recent experimental and theoretical studj8s9] of  reaching the poink, at timet=t,. A(t) is a Largange mul-
large nonequilibrium fluctuations driven by random fields intiplier function that assures that the optimal solution is con-
the form of Gaussian noise, it has been shown that the prolstrained to satisfy Eq1). The Lagrange multipliex assures
ability distribution of fluctuations peaks sharply for the mostthat the total energy of the field is fixed at the value
probableoptimal path for the fluctuation trajectory. This ob- [11,12,
servation opens a broad area of research in the field of large
fluctuations in terms of optimal control theory. That is, can 1ftgdt E(t)2=U @)
. . . . . 2 .
we design controls that optimally work in cooperation with 0
natural fluctuations to better achieve a desired physical ob-
jective? The temporal form of the optimal control field can be found
In the present paper we show that the task of control iy minimization of Jg with respect tox(t), A(t), x, and
the presence of nonequilibrium fluctuations can be formuE(t), and solving the corresponding Euler-Lagrange equa-
lated as a problem in optimal control theory. This approacHions.
allows one to use the powerful mathematical and numerical In order to investigate the role of fluctuations in the model
techniques developed in that figl#i0]. To demonstrate the described by Eq(1), we introduce the random fieldorce)
basic formalism, we apply it to the case of simple linearf(t) which we choose to be Gaussian white noise. Assuming
Brownian motion for which analytical results can be ob-that the intensity of the random field is sufficiently small, we

+3x

J, o
; tE(t)°—U|. 2

tained. may rewrite Eq(1) as
X
Il. OPTIMAL CONTROL FORMALISM gt = FE)+ f(1), (4)
In the conventional formulation of optimal control theory
one is interested in determining the temporal form of thewith
external control field that steers the system to the vicinity of , ,
Y 4 (FOF(t))=Dat—t"), (5)

a given point in the phase space often at given moment of

time. In order to be specific and illustrate the main ideas, WeyhereD is the characteristic noise intensity. The probability

will consider a simple formulation of optimal control theory. p f(t)] of the realization of a particular random field trajec-
We assume that the system is described by an equation ry is given by[13]

motion with one degree of freedom,

1
dx P[f(t)]ocexp{——f dtf(t)Z}. (6)
Ji~FxE), @ 2D

One can see from Ed6) that the probabilityP reaches its
whereE(t) is the external control field, and(x,E) acts as maximum for the most probable random field which mini-
the total force that drives the system. In order to find themizes the integralfdt f(t)? under the constraint that the

optimal external fieldE(t) that steers the system to the vi- equation of motion, Eq(4), is satisfied. Such a constraint
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leads to a nonzero value of the most probable random field,
which, according to Eq(6), would be equal to zero without
constraints. We will call the most probable random field

f(t) as theoptimal random field §(t) to distinguish it from
the optimal control field Ep(t).
The optimal control fieldE,,; cooperating with the opti-
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IF(X,E)
JE

xE(t)= A(1). (13
The following minimization algorithm may be adoptgtil]
to solve Egs(3), (4), and(11)—(13).

(1) Make an initial guess for the fiel(t) consistent with

mal random fieldf ,,(t) determines the particular fluctuation Eq. (3), and setf=0.

trajectoryx(t), called optimal trajectory or optimal fluctua-

(2) Integrate the equation of motion, E¢4), with the

tion. The probability of an optimal fluctuation is equal to the initial condition.

probability of the realization of the optimal random field. In

(3) With the resultant time evolution of(t), apply the

order to find the optimal trajectory of the system leading toboundary condition, Eq(12), and integrate Eq11).

point x4 it has been proposd@] to minimize [ dt f(t)? un-
der the constraint that the equation of motion, Etj, with
boundary conditionx(0)=Xxg,X(tg) =X4 be satisfied. How-

ever, a full formulation of this problem with the control field

has not been implemented, as discussed below.
Rather than imposing the hard demand théit;) =X,

(4) With the resultant time evolution af(t) and \(t)
calculateE(t) from Eg. (13) while adjusting the Lagrange
multiplier x to satisfy Eq.(3).

(5) Use the control fieldE(t) and “random” field f(t)
from Eq. (10) and repeat step&)—(4) until a convergent
solution is obtained.

one can use optimal control theory by introducing the target Recently Smelyanskiy and Dykmdi4] considered the

functional[i.e., %k(x(tg) —xg)z] for the model(4) that deter-

optimal control of large fluctuation using a different formal-

mines the boundary conditions for the Lagrange multiplierism without the target term in the cost functional. Explicit

function, and permits finding(t,) self-consistently. We
seek the fluctuation path that approachs the pejnin an

results were obtained with perturbation theory with respect
to control field. The present approach utilizing optimal con-

optimal manner, corresponding to the minimization of thetrol theory allows one to go beyond the perturbation theory

functional
ty ty dx
Jf,Ezik(x(tg)—xg)ZJr%f dt f(t)2+f dtn(t) at
0 0

—F(,E)—f(t) | +1x fotgth(t)z—u . 7)

Thus we seek the best contrBlt) that can cooperatively
work with the optimal random fluctuatiof(t) of minimal
norm in order to meet the objectivét,) =X, . It is apparent
that x(tg) will be driven closer toxy ask increases. The
variation of the functional; g yields

835 = K(X(tg) —Xg) X(tg) + J:gdt f(t) SF(t)+ f;gdtx(t)

aox  JF S JF SE 5f
X| 2™ ox KO~ S B 6F (1)
tg
+XJ ESE(t). (8)
0
AssumingéJs =0, and integrating by parts,
ftgdtx 0 2%\ axls ftgdta)\éx 9
. (O —r= g o 95 % )

we obtain the following equationglong with Eqs.(3) and

@]

f(H)=\(1), (10
2N _ oF

E_)\K’ (11

A(tg) =Kk(Xg—X(tg)), (12

in a convenient way.

lll. LINEAR BROWNIAN MOTION

In order to illustrate the formalism above, we consider
linear Brownian motion that corresponds the replacement of
F(x,E) in Eq. (4) by

F(x,E)=—yx+E 14
This simple case allows for the analytical solution for the
temporal form of the external optimal field and for the prob-
ability of the optimal fluctuations.

Equations(11) and(13) reduce to

N
E - 7)\! (15)
E(t)= MY (16)
X
We obtain
1 2’)/U 1/2
x(t)= Z/(e“—e‘yt) k(xg—x(tg))e‘7t9i<m) ,
(17
2’)/U 1/2
Eop(t) == (m) e, (18)
o) =k(Xg—X(tg))e", (19

The value ofx(ty) should be obtained self-consistently from
Eq. (17) by settingt=tg4

One can see from Egél8) and(19) that the shape of the
external optimal fieldEy,(t) coincides exactly with the
shape of random field,(t). The positive growth of these
functions with larger values ofy is natural asy acts as
damping rate in Eq(14), and both the control field and ran-



2524 B. E. VUGMEISTER AND H. RABITZ 55

dom field must work cooperatively to overcome the dampingOne can see from Ed22) that the meaning ok can be
to achievex(ty)~x4. When obtainingE,(t) in Eq. (18), given as the shift of the most probable valuexgfdue to
we used Eq(3) in order to findx, and the two possible cooperation between the optimal control fiefdy(t) and
solutions fory correspond to two different fields, differ-  optimal random field ,,(t). For yt;>1 this shift is seen to
ing only in sign. The positive value d,; corresponds to approach the time independent value/2y) Y2 from Eq.
the external field that drives the system in the same directiof21). As seen from Eq(22), the control field increases the
asfoy. Itis apparent that such a control field decreases théransition probability of approaching the target.
energy of the random field required to achieve the value We emphasize that a1=0 (i.e., E=0), Eqg.(22) coin-
X(tg)=Xg. Indeed, we obtain(choosing, for simplicity, cides with the exact results for the nonequilibrium transition
k>1) probability for linear Brownian motion. There are two pos-
sible reasons for such a coincidence. First, the probability

lthdt Fo(1)2= ?’(XgIX)2 (20 distribution over the paths peaks sharply at the most probable
2 Jo op 1-e g’ optimal path. Such an explanation, that is appropriate for
large occasional fluctuations, has been given in R&$.
where On the other hand, in linear systems the distribution of dif-
1 ferent paths is Gaussian due to the character of the random
T~ _a—29tg\ 112 forcef(t). In this situation the most probable transition prob-
x 27[2yU(1 el @1 ability coincides with the observable average transition prob-

. . ability apparently due to the symmetrical form of the Gauss-
Equation (20) shows that the energy of the random field jap, gistribution of the different paths, rather than narrow path

utilized to aid in steering the system to pokgt>0 is dimin-  gistribution. This aspect has not been given enough attention

in an indesirable increase of the energyfgf. Such a situ-
ation, known as anini-maxsolution, has been discussed re-
cently[12] in the study of control in the presence of distur-
bances, with fixed energy. The latter work sought the best |n conclusion we have shown that the analysis of non-
control in the presence of the worst possible disturbancegquilibrium fluctuations in stochastic systems can be attrac-
with fixed energy as a means of assuring a robust contralvely formulated in terms of conventional optimal control
with the fluctuations having a minimal effect on the out-theory as a problem of finding the external control field that
come. In contrast, the present work seeks the best contrgdcrease the probability for the system to reach the target
field with fixed energy that can cooperatively work with dis- state. The full exploration of this observation should open up
turbances(fluctuations to optimally achieve the objective. dynamical controls that mayork cooperatively wittsystem
Thus uncontrolled disturbances can be beneficial if we treaffuctuations.

them properly.

IV. CONCLUSION
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